Balancing contractility and energy production: the role of myocyte enhancer factor 2 (MEF2) in cardiac hypertrophy.

نویسندگان

  • Michael P Czubryt
  • Eric N Olson
چکیده

Cardiac hypertrophy -- that is, enlargement of the heart resulting from increased myocyte size -- is observed with many forms of human heart disease. It may arise secondary to an insult, such as infarct or chronic hypertension, or may occur as a consequence of a genetic defect, such as in hypertrophic cardiomyopathy. Traditionally, it has been widely believed that hypertrophy occurred as an adaptive response to normalize increased wall stress due to disease. Recently, however, it has been observed that while hypertrophy initially appears to improve the function of the heart following insult, over time, it frequently leads to a decompensated state, characterized by fibrosis and chamber dilation, resulting in overt heart failure. Hypertrophy also occurs during fetal development, immediately after birth, and in trained athletes; however, it does not lead to decompensation in these states. Experiments over the last 15 years have implicated similar signaling pathways in both pathological and physiological hypertrophic responses. Recently, important differences have been demonstrated that might hold the key to the development of effective new treatments for human diseases. This chapter focuses on how these hypertrophic responses differ from one another phenotypically and discusses how inefficient or impaired energy metabolism in the heart may contribute to the development of pathological responses. We also discuss recent evidence that the myocyte enhancer factor 2 (MEF2) transcription factor family, which previously has been shown to be important in cardiac development and hypertrophy, may have a role in regulation of cardiac energy metabolism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ca2+/Calmodulin-Dependent Protein Kinase II and Androgen Signaling Pathways Modulate MEF2 Activity in Testosterone-Induced Cardiac Myocyte Hypertrophy

Testosterone is known to induce cardiac hypertrophy through androgen receptor (AR)-dependent and -independent pathways, but the molecular underpinnings of the androgen action remain poorly understood. Previous work has shown that Ca2+/calmodulin-dependent protein kinase II (CaMKII) and myocyte-enhancer factor 2 (MEF2) play key roles in promoting cardiac myocyte growth. In order to gain mechanis...

متن کامل

The Function of the MEF2 Family of Transcription Factors in Cardiac Development, Cardiogenomics, and Direct Reprogramming

Proper formation of the mammalian heart requires precise spatiotemporal transcriptional regulation of gene programs in cardiomyocytes. Sophisticated regulatory networks have evolved to not only integrate the activities of distinct transcription factors to control tissue-specific gene programs but also, in many instances, to incorporate multiple members within these transcription factor families...

متن کامل

The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice.

The adult heart responds to excessive neurohumoral signaling and workload by a pathological growth response characterized by hypertrophy of cardiomyocytes and activation of a fetal program of cardiac gene expression. These responses culminate in diminished pump function, ventricular dilatation, wall thinning, and fibrosis, and can result in sudden death. Myocyte enhancer factor-2 (MEF2) transcr...

متن کامل

Cellular Biology Neurohormonal Regulation of Cardiac Histone Deacetylase 5 Nuclear Localization by Phosphorylation-Dependent and Phosphorylation-Independent Mechanisms

Rationale: Myocyte enhancer factor 2 (MEF2) transcription factors drive the genetic reprogramming that precipitates pathological cardiac hypertrophy and remodeling. Class II histone deacetylase (HDAC) isoforms, such as HDAC5, act as signal-responsive repressors of MEF2 activity in cardiac myocytes and their nuclear export provides a key mechanism for the neurohormonal induction of such activity...

متن کامل

MEF2 activates a genetic program promoting chamber dilation and contractile dysfunction in calcineurin-induced heart failure.

BACKGROUND Hypertrophic growth, a risk factor for mortality in heart disease, is driven by reprogramming of cardiac gene expression. Although the transcription factor myocyte enhancer factor-2 (MEF2) is a common end point for several hypertrophic pathways, its precise cardiac gene targets and function in cardiac remodeling remain to be elucidated. METHODS AND RESULTS We report the existence o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Recent progress in hormone research

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2004